デジタル回路

第03講 負論理とゲート

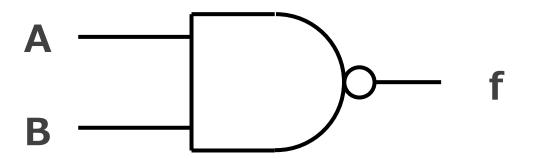
専門学校静岡電子情報カレッジ

ITゲーム&ロボットシステム学科

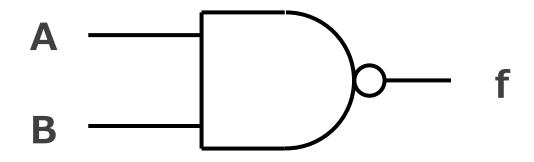
ロボットシステム研究 & ITスペシャリスト研究

有賀浩

第03講 アジェンダ

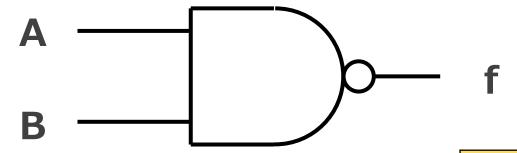

- 1. 出力が負論理のゲート
- 2. 入力が負論理のゲートとド・モルガンの法則
- 3. 入出力とも負論理のゲート

出力が負論理のゲート


NAND 否定論理積

ANDなのですべての入力がONのときだけ出力ON

入力:正論理、出力:負論理のAND

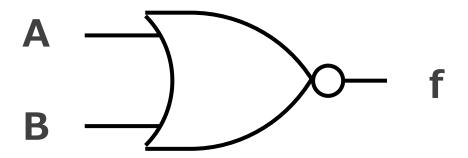

2入力NANDの論理式

$$f = \overline{A \cdot B}$$

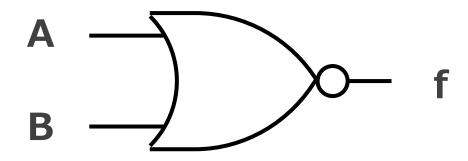
読み方:「ABバー」

2入力NANDの真理値表

Α	В	f
OFF	OFF	OFF
OFF	ON	OFF
ON	OFF	OFF
ON	ON	ON

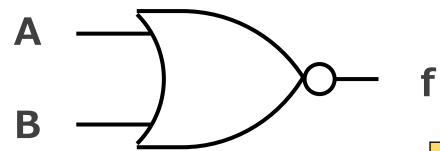

Α	В	f
0	0	1
0	1	1
1	0	1
1	1	0

出力:負論理 OFF=1、ON=0


NOR 否定論理和

ORなので入力が一つでもONなら出力ON

入力:正論理、出力:負論理のAND


2入力NORの論理式

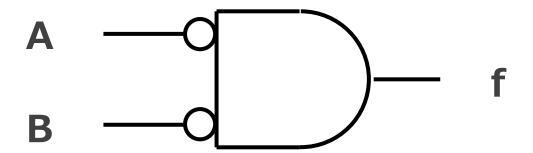
$$f = \overline{A + B}$$

読み方:「A plus Bのバー」

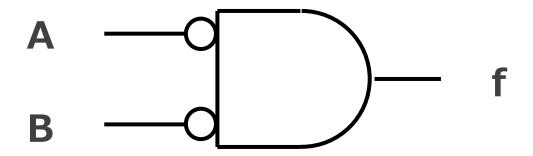
2入力NORの真理値表

Α	В	f
OFF	OFF	OFF
OFF	ON	ON
ON	OFF	ON
ON	ON	ON

Α	В	f
0	0	1
0	1	0
1	0	0
1	1	0

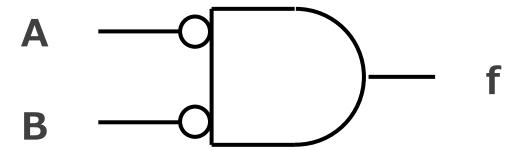

出力:負論理 OFF=1、ON=0

入力が負論理のゲートとド・モルガンの法則


入力が負論理のAND

ANDなのですべての入力がONのときだけ出力ON

入力:負論理、出力:正論理のAND


入力が負論理のAND 論理式

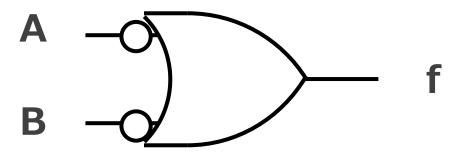
$$f = \overline{A} \cdot \overline{B}$$

読み方:「Aバーand Bバー」

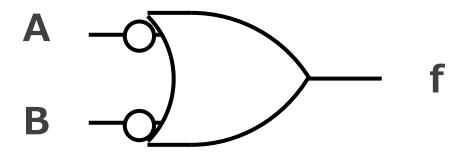
入力が負論理のAND 真理値表

Α	В	f
OFF	OFF	OFF
OFF	ON	OFF
ON	OFF	OFF
ON	ON	ON

全てONのときだけ 出力ON

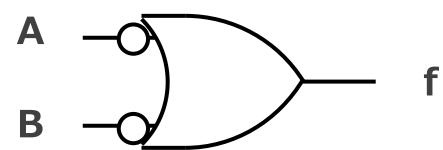

Α	В	f
0	0	1
0	1	0
1	0	0
1	1	0

入力:負論理 OFF=1、ON=0


入力が負論理のOR

ORなので入力が一つでもONなら出力ON

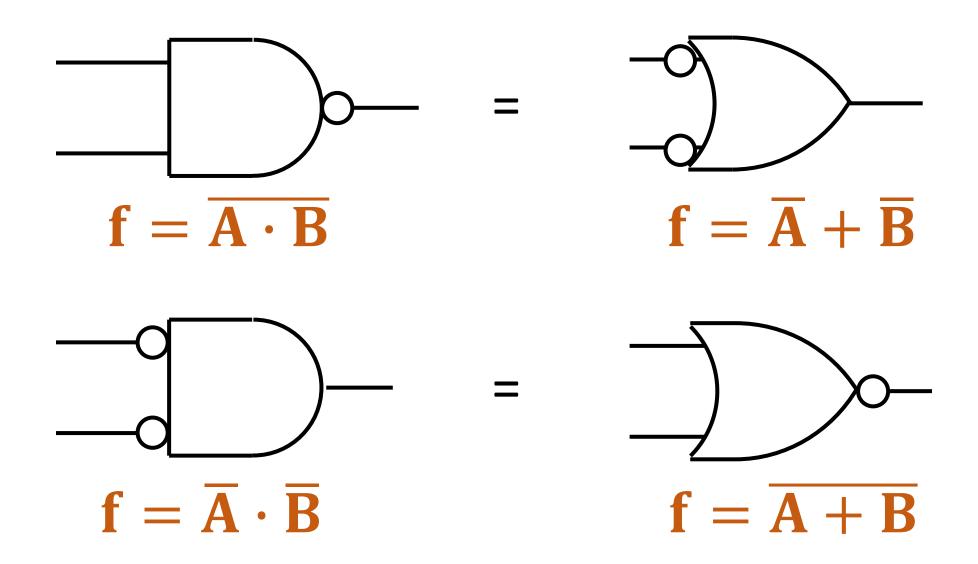
入力:負論理、出力:正論理のAND


2入力ORの論理式

$$f = \overline{A} + \overline{B}$$

読み方:「Aバー+Bバー」

2入力ANDの真理値表


Α	В	f
OFF	OFF	OFF
OFF	ON	ON
ON	OFF	ON
ON	ON	ON

入力がひとつでも ONのなら、出力ON

Α	В	f
0	0	1
0	1	1
1	0	1
1	1	0

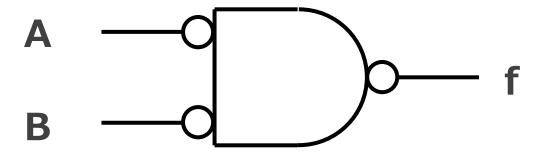
出力:負論理 OFF=1、ON=0

真理値表を比較してみると

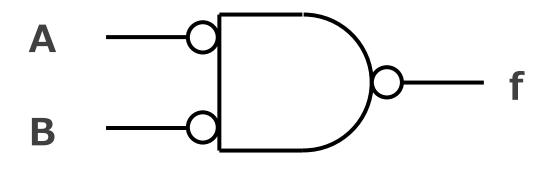
ド・モルガンの法則

$$\overline{\mathbf{A} \cdot \mathbf{B}} = \overline{\mathbf{A}} + \overline{\mathbf{B}}$$

$$\overline{\mathbf{A}} \cdot \overline{\mathbf{B}} = \overline{\mathbf{A} + \mathbf{B}}$$


・ハードウェア上は「等価」考え方(論理)は全く異なる

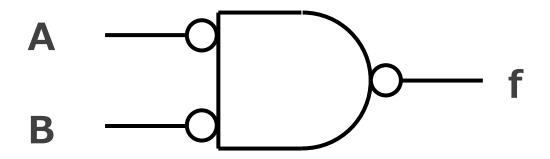
入出力とも負論理のゲート


入出力とも負論理のAND

ANDなのですべての入力がONのときだけ出力ON

入力:負論理、出力:負論理のAND

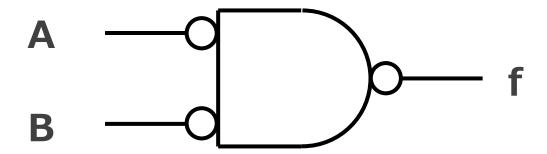
入出力とも負論理のAND 論理式



$$f = \overline{\overline{A} \cdot \overline{B}}$$

読み方:「Aバーand Bバーのバー」 「AバーBバーのバー」

$$\overline{\overline{\mathbf{A}} \cdot \overline{\overline{\mathbf{B}}}} = \overline{\overline{\mathbf{A}}} + \overline{\overline{\mathbf{B}}} = \mathbf{A} + \mathbf{B}$$


ド・モルガンの法則により…

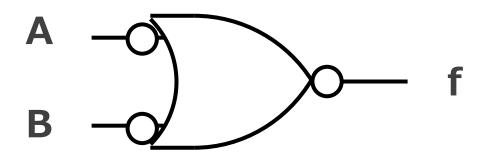
$$\overline{\overline{\mathbf{A}} \cdot \overline{\overline{\mathbf{B}}}} = \overline{\overline{\mathbf{A}}} + \overline{\overline{\mathbf{B}}} = \mathbf{A} + \mathbf{B}$$

すべて正論理のORと等価

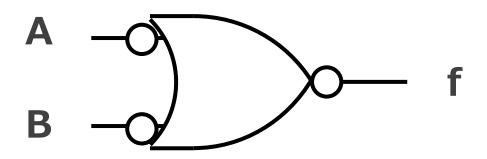
入出力とも負論理のAND 真理値表

Α	В	f
OFF	OFF	OFF
OFF	ON	OFF
ON	OFF	OFF
ON	ON	ON

全てONのときだけ 出力ON

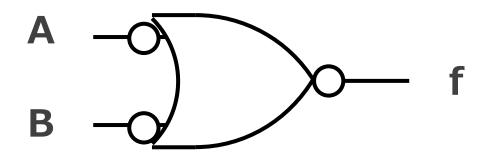

Α	В	f
0	0	0
0	1	1
1	0	1
1	1	1

入出力とも:負論理 OFF=1、ON=0


入出力とも負論理のOR

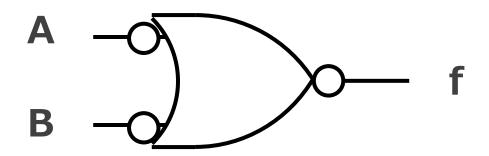
ORなので入力が一つでもONなら出力ON

入力:負論理、出力:負論理のOR


入力が負論理のAND 論理式

$$f = \overline{\overline{A} + \overline{B}}$$

読み方:「Aバー+Bバーのバー」


ド・モルガンの法則により

$$\overline{\overline{\mathbf{A}} + \overline{\overline{\mathbf{B}}}} = \overline{\overline{\mathbf{A}}} \cdot \overline{\overline{\mathbf{B}}} = \mathbf{A} \cdot \mathbf{B}$$

すべて正論理のANDと等価

入力が負論理のAND 真理値表

Α	В	f
OFF	OFF	OFF
OFF	ON	OFF
ON	OFF	OFF
ON	ON	ON

入力がひとつでも ONのなら、出力ON

Α	В	f
0	0	0
0	1	0
1	0	0
1	1	1

入出力とも:負論理 OFF=1、ON=0

第03講 まとめ

- 1. 出力が負論理のゲート
- 2. 入力が負論理のゲートとド・モルガンの法則
- 3. 入出力とも負論理のゲート