デジタル回路

第13講 組み合わせ回路設計製作

専門学校静岡電子情報カレッジ

ITゲーム&ロボットシステム学科

ロボットシステム研究 & ITスペシャリスト研究

有賀浩

第13講 アジェンダ

第13講 組み合わせ回路設計演習

- 1. 4ビットスイッチ回路1
- 2. 4ビットスイッチ回路 2
- 3. 7セグメントLED
- 4. 7セグメントLED チャレンジ課題

4ビットスイッチ回路1

【仕様】

4つのスイッチA,B,C,Dがある。 3つ以上のスイッチがONのとき LEDが点灯する。 スイッチ、LEDとも正論理

設計が完了したらTinkerCADで製作。

真理値表

Α	В	С	D	f
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1

Α	В	С	D	f
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

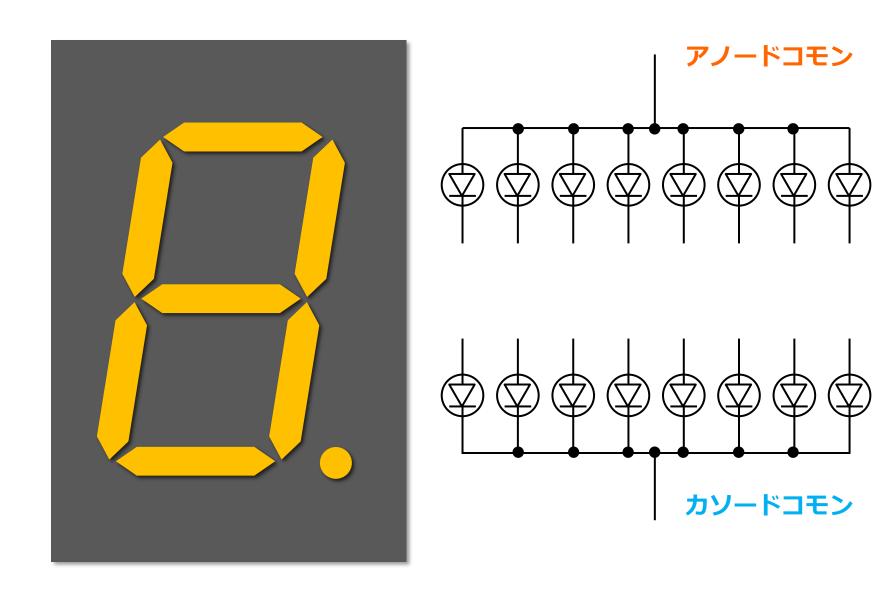
4ビットスイッチ回路2

【仕様】

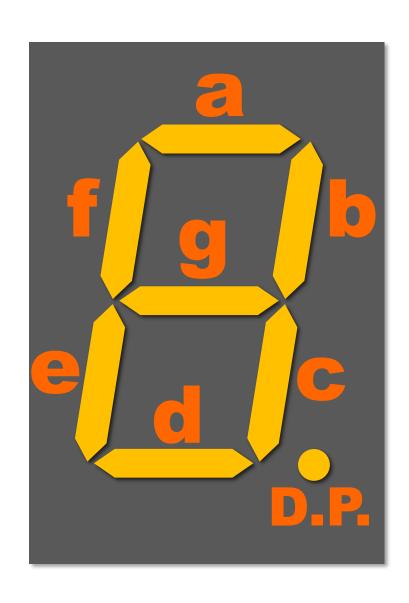
4つのスイッチA,B,C,Dと、 対応するLED、a,b,c,d がある。 優先順位もこの順であるとき、 最も優先順位が高いスイッチに 対応したLEDだけが点灯 LED、スイッチとも正論理

真理値表

A	В	С	D	а	b	С	d
1	X	X	X	1	0	0	0
0	1	X	X	0	1	0	0
0	0	1	X	0	0	1	0
0	0	0	1	0	0	0	1


x ··· 1でも0でもよい = don't care

フセグメントLED


【仕様】

3つのスイッチA,B,Cが 5または7のとき、 7セグメントLEDに数字を表示 スイッチはCがMSB、AがLSB LED、スイッチともに負論理 TinkerCADで回路製作、動作させる

7セグメントLEDとは

7セグメントLEDとは

真理値表

	入力		出力(負論理)								
2 ²	2 ¹ B	2 ⁰ A	а	b	С	d	е	f	g	D.P.	表示
0	0	0	1	1	1	1	1	1	1	1	
0	0	1	1	1	1	1	1	1	1	1	
0	1	0	1	1	1	1	1	1	1	1	
0	1	1	1	1	1	1	1	1	1	1	
1	0	0	1	1	1	1	1	1	1	1	
1	0	1	0	1	0	0	1	0	0	1	5
1	1	0	1	1	1	1	1	1	1	1	
1	1	1	0	0	0	1	1	0	1	1	7

論理式

	入力			$\mathbf{a} = \mathbf{c} = \mathbf{f} = \overline{\mathbf{A} \cdot \mathbf{C}}$							
22	21	20			-						表示
С	В	Α	2		b =	= A	·B	• C		P.	
0	0	0	1	А	= 0	z =		$\overline{\overline{\mathbf{R}}}$	<u></u>	L	
0	0	1	1	1	1		1		1		
0	1	0	1	1	1	1	1	1_	1	1	
0	1	1	1	1	1	1	e	<u>=</u> L). P	=	1
1	0	0	1	1	1	1	1	1	1	1	
1	0	1	0	1	0	0	1	0	0	1	5
1	1	0	1	1	1	1	1	1	1	1	
1	1	1	0	0	0	1	1	0	1	1	7

•回路製作のための工夫

$$\mathbf{a} = \mathbf{c} = \mathbf{f} = \overline{\mathbf{A} \cdot \mathbf{C}}$$

$$\mathbf{b} = \overline{\mathbf{A} \cdot \mathbf{B} \cdot \mathbf{C}} = \overline{\mathbf{A} \cdot \mathbf{C}} + \overline{\mathbf{B}} = \mathbf{a} + \overline{\mathbf{B}}$$

$$\mathbf{d} = \mathbf{g} = \mathbf{A} \cdot \overline{\mathbf{B}} \cdot \mathbf{C} = \overline{\mathbf{A} \cdot \mathbf{C}} + \mathbf{B} = \mathbf{a} + \mathbf{B}$$

$$e = D. P. = 1$$

7セグメントLED チャレンジ課題

【仕様】

3つのスイッチA,B,Cが

任意の2つの状態で

7セグメントLEDに数字を表示

スイッチはCがMSB,AがLSB

LEDは負論理

TinkerCADで回路製作、動作させる

第13講 まとめ

第13講 組み合わせ回路設計演習

- 1. 4ビットスイッチ回路1
- 2. 4ビットスイッチ回路2
- 3. 7セグメントLED
- 4. 7セグメントLED チャレンジ課題